Weakly Confluent Mappings and Finitely-generated Cohomology

نویسنده

  • JAMES T. ROGERS
چکیده

In this paper we answer a question of Wayne Lewis by proving that if X is a one-dimensional, hereditarily indecomposable continuum and if HX(X) is finitely generated, then C(X), the hyperspace of subcontinua of X, has dimension 2. Let C(A) be the hyperspace of subcontinua of the continuum X with the topology determined by the Hausdorff metric. A classical theorem of J. L. Kelley [4] asserts that if A is a hereditarily indecomposable continuum and the dimension of X, dim X, exceeds one, then dim C(A") = oo. On the other hand, E. D. Tymchatyn [9] has proved that if A is a nondegenerate hereditarily indecomposable subcontinuum of the plane (hence dim A = 1), then C(A) can be embedded in R3, and consequently dim C(A") = 2. Carl Eberhart and Sam Nadler, Jr. [1], and later Howard Cook, asked if there exists a one-dimensional, hereditarily indecomposable continuum with an infinitedimensional hyperspace. Wayne Lewis [7] has recently given such an example. Lewis' powerful technique yields a continuum with infinitely-generated cohomology, and he has asked (cf. [6]) if a one-dimensional continuum with finitely-generated (co)homology can have an infinite-dimensional hyperspace. In this note, we prove the following theorem. Theorem I. If X is a one-dimensional, hereditarily indecomposablecontinuum and HX(X) is finitely generated, then dim C(X) = 2. Theorem 1 is equivalent, by an observation [1] of Eberhart and Nadler, to the following theorem. Theorem 1. If X is a one-dimensional, hereditarily indecomposable continuum, if HX(X) is finitely generated, and if f: X —» Y is a monotone, open mapping onto a nondegenerate continuum Y, then dim Y = 1. Theorem 2 will follow as a corollary to the following theorem. Received by the editors April 3, 1979; presented to the Society, January 3, 1980. AMS (MOS) subject classifications (1970). Primary 54F45, 54F50; Secondary 54C10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES

Let (R,m) be a Noetherian local ring, M be a finitely generated R-module of dimension n and a be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of AsshR M, then there exists an ideal a of R such that AttR Hna (M)=T. As an application, we give some relationships between top local cohomology modules and top f...

متن کامل

ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...

متن کامل

ARTINIANNESS OF COMPOSED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring and let $fa$, $fb$ be two ideals of $R$ such that $R/({fa+fb})$ is Artinian. Let $M$, $N$ be two finitely generated $R$-modules. We prove that $H_{fb}^j(H_{fa}^t(M,N))$ is Artinian for $j=0,1$, where $t=inf{iin{mathbb{N}_0}: H_{fa}^i(M,N)$ is not finitelygenerated $}$. Also, we prove that if $DimSupp(H_{fa}^i(M,N))leq 2$, then $H_{fb}^1(H_{fa}^i(M,N))$ i...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

Tame Loci of Generalized Local Cohomology Modules

Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010